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Abstract

The effects of a tuned added mass on the aeroelastic stability of a single degree of freedom bluff body
exposed to a steady flow are investigated. The model captures the essential aspects of the behaviour of
flexible structures equipped with Tuned Mass Dampers undergoing galloping oscillations. The system
exhibits simple as well double Hopf bifurcations, of non-resonant and 1:1 resonant type. Postcritical
behaviour of the system in the neighbourhood of the 1:1 resonant type bifurcation is investigated.
Employing the Multiple Scale Method, a second order bifurcation equation in the complex amplitude of
motion is obtained. Analytical solutions are used to describe the bifurcation scenario in the cases of both
undercritical and supercritical aerodynamic behaviour of the bluff body. The effectiveness of the Tuned
Mass Damper even in the postcritical range is proved.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The stability of aerodynamic oscillators plays an important role for many structures subjected
to wind and/or ocean waves [1–3]. Therefore, mechanical devices added to the structural system to
prevent or reduce the magnitude of aeroelastic phenomena are of current research interest [4–7].
The concept of damping a structural system by adding a small mass to it dates back to the

beginning of the century. Previous studies on tunable mass dampers have set out to optimize
mechanical design characteristics in order to increase the critical value at which the dynamic
instability phenomenon is triggered [8,9]. However, in order to investigate system performance
when the flow velocity exceeds the critical value, an analysis of the postcritical behaviour is
needed.
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Investigations on the system postcritical behaviour have been performed by means of
numerical, analytical and experimental methods [10,11]. Nevertheless, in the numerical and
experimental tests presented, the dynamical behaviour has been described only for some specific
values of the system parameters. Most importantly, the analysis relies on the assumption that the
postcritical behaviour of the system can be described referring to an equivalent single degree of
freedom (s.d.o.f.) system whose approximate solution has been pursued by the multiple scale
method [10] or by the averaging method in [11].
A first study of the system postcritical behaviour as a 2d.o.f. system has been presented by the

authors in Ref. [12], with the aim to describe the entire postcritical scenario in the complete
parameter-space. In this study, the primary system (PS) and the added mass (TMD) are assumed
to posses a s.d.o.f. and to be linear, with the only source of non-linearities arising from the flow-
structure interaction. Using a perturbation method, simple and double Hopf bifurcations,
occurring at different values of the parameters, have been analyzed. The effectiveness of TMDs
has been shown to persist even in the postcritical range, since TMDs generally reduce the
amplitude of oscillations in the supercritical case. However, the analysis developed in Ref. [12]
was only partial, since it was assumed that (a) a pair of conjugate eigenvalues of the Jacobian
matrix is stable (simple Hopf) or (b) the two pairs are both critical but distinct (non-resonant

double Hopf). Indeed, due to the tuning between the PS and the TMD, the two eigenvalue pairs
are very close to each other, so it is suspected that (a) the stable pair may play some role in the
description of the system behaviour and (b) some interaction between the nearly resonant
frequencies may occur. This last problem was tentatively addressed by building up a so-called
quasi-resonant solution based on the assumption that the Jacobian matrix admits two well-
separated eigenvectors when the frequencies are still very close to each other; however, this
hypothesis breaks down when the two frequencies exactly coalesce, since the matrix becomes
defective (nilpotent). The quasi-resonant solution revealed qualitative aspects of the motion which
cannot be described by the non-resonant solution. It was therefore concluded that a more refined
analysis is necessary, in order to describe the neighbourhood of the coalescence point in the
parameter space at which a 1:1 resonant double Hopf bifurcation takes place. However, such an
analysis is not trivial, since standard perturbation methods do not work when the Jacobian is
defective; therefore an adapted procedure must be employed.
In this paper the model presented in Ref. [13] is considered and the postcritical behaviour of the

system is analyzed for a Hopf bifurcation in the region of 1:1 resonance. The multiple scale
method (MSM) is employed to analyze the defective bifurcation according to the algorithm
developed in Ref. [14]. This analysis is believed to be new, both from a mathematical and a
physical point of view. A second order complex bifurcation equation in the amplitude of the
unique critical mode is derived and the postcritical scenario is analyzed in the bifurcation
parameter space. Then, the limits of validity of the concept of equivalent s.d.o.f. introduced in
Refs. [10,11] are critically discussed, in the light of the more accurate analysis performed here.

2. Problem formulation

An elastically supported bluff body connected with a small added mass and subject to a steady
flow is considered (Fig. 1). Both the bluff body primary system (PS) and the added mass (TMD)
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are assumed to possess a s.d.o.f. and to be linear. The aerodynamic forces acting on the TMD are
assumed to be negligible in comparison with those acting on the PS. These forces are obtained
using the quasi-static theory [15] taking into account both drag and lift components and retaining
the linear and cubic terms of their Taylor expansion. The equation of motion has been derived in
Ref. [12]. By using non-dimensional quantities and adopting a state-space representation they
read:

’x ¼ Lxþ fðx;mÞ: ð1Þ

In Eq. (1)

L ¼
0 I

�K �C

" #
ð2Þ

is the system matrix with

C ¼
2xsð1� nÞ þ 2mgxt �2mgxt

�2gxt 2gxt

" #
; K ¼

1þ mg2 �mg2

�g2 g2

" #
ð3Þ

being the damping and stiffness matrices, respectively; x ¼ fq1; q2; ’q1; ’q2g
T is the state-space

vector, with q1 and q2 the non-dimensional cross-flow displacements of PS and TMD,
respectively; m ¼ fm; g; xt; ng is the vector of control parameters; f ¼ ffig collects the non-linear
part of the vector field, whose components are

f1 ¼ 0; f2 ¼ 0; f3 ¼
1

2

d2A1A3
xsn

x33; f4 ¼ 0: ð4Þ

.
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mt

msωs
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Fig. 1. Aeroelastic oscillator with tuned mass damper.
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In Eqs. (1)–(4) the following non-dimensional variables have been introduced:

q1 ¼
#q1

D
; q2 ¼

#q2

D
; m ¼

mt

ms

; g ¼
ot

os

; n ¼
U

Uunc

;

U ¼
#U

osD
; Uunc ¼

2xs

dA1
; d ¼

1

2

raD2

ms

; t ¼ #tos; ð5Þ

where D is a typical dimension of the body, ms;mt; xs; xt are masses and damping coefficients, os

and ot are the undamped frequencies of the two isolated bodies, U is the uniform flow velocity,
Uunc its critical value for the uncontrolled structure; Ai are the aerodynamic coefficients, ra the air
density and t the time, the hat denoting dimensional quantities.

3. Bifurcation analysis

The equations of motion (1) admit the equilibrium position x ¼ 0: The position is stable or
unstable depending on the values of the parameters m; especially on the parameter n which
accounts for the flow velocity. The problem has been analyzed in Refs. [8–11] and completely
described in Ref. [12] where analytical expressions of non-resonant and resonant double Hopf
manifolds are given. A 3-D representation of the critical manifolds is depicted in Fig. 2a for
a fixed value of m in the ðn; xt; gÞ-space, while the manifolds in the ðn; xt; mÞ-space can be found in
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Fig. 2. Critical manifolds in the ðn; xt; gÞ-space for m ¼ 0:005; exact (a,c) versus perturbative solution (b,d): (a) and
(b) 3-D view; (c) and (d) sections for different g (heavy line g ¼ g0 ¼ 0:9975; light line g ¼ 0:9925).
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Ref. [13]. Highlighted, in particular, is the existence of a peculiar point P0 � ðn0; xt0; g0Þ at which
the critical flow velocity is maximized (optimum TMD that realizes a strong enhancement of the
critical flow velocity). In Fig. 2c sections at g ¼ g0 and gag0 of the critical manifold are shown.
For a high level of damping xt in the TMD, a simple Hopf occurs; at a low level of damping a
non-resonant double Hopf bifurcation or two successive closely-spaced bifurcations manifest
themselves. At P0 a 1:1 resonant double Hopf bifurcation occurs.
The interest is here focused on the system postcritical behaviour around the point P0: At this

point, the system is defective (or nilpotent) since the critical eigenvalues l1;2 ¼ þio; l3;4 ¼
�io ði ¼

ffiffiffiffiffiffiffi
�1

p
Þ coalesce into one pair. Only one right eigenvector u1 and one left eigenvector v2 is

associated with l1;2 ¼ þio; namely:

ðL0 � ioIÞu1 ¼ 0; ðL0 � ioIÞ
Hv2 ¼ 0; ð6Þ

where L0 is the state-space matrix evaluated at P0 and H denotes the transpose conjugate. The
defective bases are completed by the generalized u2 and v1 eigenvectors, which are (not unique)
solutions of

ðL0 � ioIÞu2 ¼ u1; ðL0 � ioIÞ
Hv1 ¼ v2; ð7Þ

respectively. Right and left eigenvectors are made bi-orthonormal, i.e., vHj uj ¼ dij ði; j ¼ 1; 2Þ:
Since the bifurcation has codimension-3 (i.e., three conditions of the eigenvalues hold, namely

Reðl1Þ ¼ Reðl2Þ ¼ 0; Imðl1Þ ¼ Imðl2ÞÞ; three bifurcation parameters transverse to the critical
manifold must be taken. By fixing m; the remaining ðn; xt; gÞ-parameters are selected as bifurcation
parameters and the neighbourhood of P0 in Fig. 2 is spanned. The multiple scale method (MSM)
is applied to perform the non-linear analysis, according to the procedure illustrated in Ref. [14].
The deviations of the parameters from the bifurcation values ðn0; xt0; gt0Þ are assumed to be

small, of order e2; with e a perturbation parameter, namely:

n ¼ n0 þ e2n2; g ¼ g0 þ e2g2; xt ¼ xt0 þ e2xt2: ð8Þ

The incremental parameter n2 represents a distinguished parameter (positive for overcritical flow
velocities) and the incremental parameters xt2 and g2 represent splitting parameters. Moreover, the
state-space variables are expanded in series of integer powers of e as

xðt; eÞ ¼ ex1 þ e2x2 þ e3x3 þ e4x4 þ Oðe5Þ ð9Þ

and several independent temporal scales tk ¼ ekt ðk ¼ 0; 1;yÞ are introduced, so that d=dt ¼
d0 þ ed1 þ?; with dk :¼ @=@tk: By substituting the previous equations in the Eq. (1) and
collecting terms with the same powers of e; the following perturbation equations are drawn up to
the e4-order:

ðL0 � d0Þx1 ¼ 0;

ðL0 � d0Þx2 ¼ d1x1;

ðL0 � d0Þx3 ¼ d1x2 þ ðd2 � L2Þx1 � 1
6
f0xxxx

3
1;

ðL0 � d0Þx4 ¼ d1x3 þ ðd2 � L2Þx2 � 1
2
f0xxxx

2
1x2: ð10Þ
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In Eqs. (10) L2 is the second order part of the e-expansion of L around P0 (i.e., L ¼ L0 þ e2L2),
whose submatrices, according to Eqs. (2) and (3), are

C2 ¼ 2
�xsn2 þ mðg0xt2 þ g2xt0Þ �mðg0xt2 þ g2xt0Þ

�ðg0xt2 þ g2xt0Þ ðg0xt2 þ g2xt0Þ

" #
;

K2 ¼ 2
mg0g2 �mg0g2
�g0g2 g0g2

" #
: ð11Þ

Finally, f0xxx is the third derivative of the non-linear part of the vector field at P0; namely

f0xxxxyz ¼ 6d
A3

U
x3y3z3: ð12Þ

It should be noted that, in Eq. (12), the actual value U of the flow velocity is used, instead of the
bifurcation value U0 [2]. Although this procedure is inconsistent, numerical results have shown
that it improves the accuracy of the solution for UbU0 [12].
According to the spectral properties (6) of the defective matrix L0; the non-diverging generating

solution of Eq. (10) reads

x1 ¼ Au1e
iot0 þ c:c:; ð13Þ

where A is the complex amplitude depending on slower time scales and c:c: stands for the complex
conjugate terms. By substituting Eq. (13) in Eq. (10) and accounting for Eq. (7), it follows that

x2 ¼ d1Au2e
iot0 þ c:c: ð14Þ

It should be noted that, although L0 is singular, no solvability conditions must be enforced on
Eq. ð102Þ; since the known term belongs to the range of the operator. In contrast, starting on e3-
order perturbation equations, solvability requires that the known term be orthogonal to the
unique left eigenvector v2: By accounting for Eq. (13), the solvability of Eq. ð103Þ reads

vH2 ðd
2
1Au2 � AL2u1 � 1

2
A2 %Af0xxxu

2
1 %u1Þ ¼ 0; ð15Þ

where an overbar denotes the complex conjugate. From Eq. (15) an ordinary differential equation
in the complex amplitude Aðt1; t2;yÞ follows:

d21A ¼ s31A þ s32A
2 %A ð16Þ

whose coefficients (and those introduced from now on) are given in Appendix A. By solving
Eq. (10), and omitting the complementary function, it is found that

x3 ¼ ðd2Au2 � p31Au2 � p32A
2 %Au2Þeiot0 þ z111A

3e3iot0 : ð17Þ

By using Eqs. (14) and (17) in ð104Þ the relevant solvability conditions read

2d1d2A ¼ s41d1A þ s42A %Ad1A þ s43A
2d1 %A: ð18Þ

The solvability conditions in Eqs. (16) and (18) are combined in a unique equation by coming
back to the true time t through a consistent reconstitution procedure [16]. By using the chain rule

d2A

dt2
¼ ðe2d21 þ 2e

3d1d2ÞA þ Oðe4Þ ð19Þ
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the evolutive equation for the postcritical complex amplitude A follows:

d2A

dt2
¼ C1A þ C2

dA

dt
þ C3A

2 %A þ C4A %A
dA

dt
þ C5A

2 d %A

dt
: ð20Þ

In Eq. (20) the parameter e has been absorbed in accordance with eA-A; e d=dt-d=dt; and the
coefficients Ci are reported in Appendix A. Expressing the amplitudes in polar form A ¼ 1

2
aðtÞeiyðtÞ

and separating the real and imaginary parts of Eqs. (20), four differential equations of the first
order in the real variables ða; y; r; sÞ follow:

’a ¼ r;

’r ¼ R1a þ as2 þ 1
4

R3a
3 þ R2r � I2as þ 1

4
ðR4 þ R5Þa2r þ 1

4
ðI5 � I4Þa3s;

a’s ¼ I1a � 2rs þ 1
4

I3a
3 þ R2as þ I2r þ 1

4
ðI4 þ I5Þa2r þ 1

4
ðR4 � R5Þa3s;

’y ¼ s; ð21Þ

where Ri ¼ ReðCiÞ and Ii ¼ ImðCiÞ: In Eqs. ð211Þ–ð213Þ; the unknown variables ða; r; sÞ; are in
number equal to the codimension of the problem; the variables describe the postcritical behaviour
of the system of Eq. (1) in the region of a 1:1 resonant double Hopf bifurcation. Eq. ð214Þ;
decoupled from the previous equations, describes the evolution of the phase y: The steady state
solutions of (21) are obtained by zeroing the right-hand side terms of ð211Þ–ð213Þ: Since a cubic
equation in a2 can be drawn, up to three real non-trivial solutions ða; sÞ are sought, depending on
the control parameter values. The solutions represent periodic motion (limit cycles) of system (1)
with constant amplitude a and frequency O ¼ oþ s:

4. Bifurcation scenario

Numerical investigations have been carried out to analyze the system postcritical behaviour
using the illustrated analytical solutions as well as direct time-integration of the equations of
motion. Use is made of either Eq. (20) in the complex amplitude A or its equivalent real
representation given by Eqs. (21).
Eqs. (20) and (21) admit the trivial solution A ¼ 0 8t: In order to evaluate the region of the

parameters where a non-trivial solution exists, a bifurcation analysis is performed. Since Eq. (21)
is in non-standard normal form (in particular Eq. ð213Þ contains the product a’s) the standard
Jacobian eigenvalue analysis fails. Therefore, the complex amplitude equation must be directly
discussed.
Considering only the linear part of Eq. (20), it can be re-written in a state-space form as

’A

.A

" #
¼

0 1

C1 C2

" #
A

’A

" #
; ð22Þ

where both A and Ci are complex quantities. In particular, ReðCiÞ and ImðCiÞ are linear
combinations of the ðn2; xt2; g2Þ-parameters through the matrix L2 (see Appendix A). The stability
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of the trivial solution A ¼ 0 of Eq. (20) is governed by the spectrum of the complex state matrix in
Eq. (22). Its eigenvalues are given by

li ¼ 1
2 C27

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C22 þ 4C1

q� �
; i ¼ 1; 2 ð23Þ

and the critical condition at which a static bifurcation takes place is ReðliÞ ¼ 0: By expressing the
coefficients Ci in terms of the ðn2; xt2; g2Þ-parameters, and using Eqs. (8) the critical conditions
furnish two manifolds, represented in Fig. 2b. They are tangent at P0 to the exact manifolds of
Fig. 2a, evaluated through the spectral analysis of the linear part of Eq. (1) (see also Ref. [12]),
and therefore represent a local approximation of these manifolds. The section at g ¼ g0 and gag0
illustrated in Fig. 2d, and compared with Fig. 2c, shows the degree of approximation achieved by
the e4-order expansion.
The postcritical behaviour is described by analyzing the dependence of the limit-cycle

amplitudes on the control parameters. Fig. 3 shows the amplitude a versus the flow velocity n and
the damping xt for the perfect tuned system ðg ¼ g0Þ and supercritical aerodynamic behaviour
(A3o0 in Eq. (4)). The regions of existence of the limit cycles are depicted in Fig. 3a, namely: in
the region R0 no limit cycles exist, but only the stable trivial solution is admitted; in R1 and R2
andR3 one, two, and three limit cycles exist, respectively, according to the discussion of Eqs. (21).
Such solutions are represented in a 3-D-view in Fig. 3b. The two stable solutions of region R2
emerge from the double Hopf boundary S2; they coalesce in the amplitude a but differ in the
frequency correction s: A unique solution rises from the simple Hopf boundaries, being stable at
Sþ
1 (positive velocity of the eigenvalues at the criticality) and unstable at S�

1 (negative velocity).
The three solutions existing in the region R3 coalesce along the line C:
In Fig. 3b four sections are selected, three (I, II, III) parallel to the ðn; aÞ-plane, the fourth (VI)

parallel to the ðxt; aÞ-plane. Path I crosses the region R0; R2 and R3 showing the occurrence of a
successive bifurcation at S�

1 : Path II contains the peculiar point P0 and it shows the transition
from the region R0 to the line C; where the three solutions coalesce in one. Path III illustrates the
passage from R0 to R1 through a simple Hopf bifurcation. Path IV explains the coalescence
mechanism: the two stable solutions ofR2 are associated to almost opposite frequency corrections
(see s in Fig. 3e) while the unstable solution has no frequency correction. At the crossing between
path IV and the line C; the three solutions coalesce to one with zero frequency correction (Figs. 3d
and e). It is worth noticing that the coalescence occurs at the smallest amplitude existing for any
given n > n0:
The analytical results of Fig. 3 have been compared with the direct numerical integration of

the equations of motion (1) and an excellent accordance between them has been found (see
Figs. 3c and d). Moreover, the curves have been compared with that of the uncontrolled system,
which only depends on n: It is seen that the limit-cycle amplitudes of the controlled system are
always below the uncontrolled ones. Therefore, the TMD has a beneficial effect even in the
postcritical range, the maximum benefit occurring at n ¼ n0; i.e., at the optimum value of the
TMD.
To better illustrate the role of the frequency correction s; the two limit cycles existing at the

point QAR2; with the same amplitudes and opposite corrections, have been depicted on the
ðq1; q2Þ-configuration plane (Fig. 4). Here, the perturbative solution at the first order (x ¼ ex1;
I-curves) and that at the second order (x ¼ ex1 þ e2x2; II-curves) have been compared with direct
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numerical integration (EX-curves). The first order solution appears quite rough in comparison
with the second order solution, which is very close to the exact one. The differences are ascribed to
the fact that the first order solution x1 (Eq. (13)), predicts steady state oscillations along the
proper eigenvector u1 at P0; therefore, it is not able to capture the dependence of the q1=q2 ratio
on the control parameters. The second order term x2 (Eq. (14)) instead accounts for such
modification, since its factor d1A ¼ isA is parameter-dependent through the frequency correction
s: Therefore the second order solution xCex1 þ e2x2 ¼ Aðu1 þ isu2Þeiot þ c:c: is an harmonic
motion along a vector that is just the lower order approximation of the proper eigenvectors at a
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solutions, (b) 3-D view in the ðn; xt; aÞ-space, (c) I, II, III ðn; aÞ-sections, (d) IV ðxt; aÞ-section, (e) IV ðxt; sÞ-section.
Continuous lines: stable solutions; dashed lines: unstable solutions; dots: numerical results; unc: uncontrolled system.
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Qi-point [17], if non-linearities are neglected in s:However, since the sensitivity of the eigenvectors
of a defective matrix is high, it is expected that the region of validity of the resonant solution is
quite limited.
The effect on the postcritical behaviour of imperfect tuning ðgag0Þ between the PS and the

TMD is analyzed in Fig. 5. The regions in which the limit cycles exist are illustrated in Fig. 5a.
The simultaneous passage of two eigenvalues across the imaginary axis is broken by the detuning
(it should be remembered that the locus of double Hopf belongs to the plane g ¼ g0); as a
consequence, a simple Hopf occurs for increasing n for any value of xt along the lower boundary
Sþ
1l : From it a regular surface arises, as illustrated in Fig. 5b. Along the higher boundaries Sþ

1h and
S�
1 ; two successive simple Hopfs occur, with positive and negative velocities of the eigenvalues
respectively. There, new surfaces arise, which coalesce along the line C; where a locus of limit
points with respect to xt occurs. In summary, with respect to the perfectly tuned case (Fig. 3b) the
two surfaces in R2 split: the upper one smoothly matches the surface in R1; while the lower one
matches the surface in R3: Two typical sections (I, II in Fig. 5b) are sufficient to describe the
scenario for increasing n (see Fig. 5c). Path I crosses all the regions Ri ði ¼ 0;y; 3Þ: Along it a
stable limit cycle first bifurcates from the trivial solution at Sþ

1l ; then an initially unstable limit
cycle bifurcates at Sþ

1h; finally, at S�
1 ; a third unstable limit cycle bifurcates while the second one

regains stability through a Neimark bifurcation, from which modulated solutions arise (not
studied here). Path II corresponds to a simple Hopf bifurcation with a stable limit cycle. Path III
shows the dependence of the amplitude (Fig. 5a) and of the frequency correction (Fig. 5e) on xt:
The curves can be usefully interpreted as perturbations of those in Figs. 3d and e, due to the
detuning. The separation of the coincident solutions appears clearly. Along the lower branch in
Fig. 5d first a Neimark bifurcation at S�

1 and then a limit point at C occur. Finally, the s-path of
Fig. 5d shows that the detuning gives rise to the lack of symmetry of the two solutions in R2:
Consequently, these solutions are represented by two orbits in the ðq1; q2Þ-configuration plane
with different amplitudes and orientations. Direct numerical integration of Eq. (1) shows a
complete qualitative agreement (see Figs. 5c and d), while quantitative differences increase when
moving away from the point P0: Moreover, the amplitudes are found to be always below that of
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the uncontrolled system, except for a very small xt not shown in Fig. 5d. This erroneous result is
however a consequence of the rough approximation of the bifurcation locus Sþ

1l far from P0 given
by the perturbation solution, as is apparent from Figs. 2c and d.
The influence of the sign of the non-linear aerodynamical force on system postcritical behaviour

is then investigated. A positive aerodynamic coefficient A3 is considered (i.e., a section with a
subcritical aerodynamic behaviour) and the previous analysis is repeated. In the perfectly tuned
case (g ¼ g0) the scenario changes as seen in Fig. 6. In Fig. 6a the regions of limit cycle existence
are illustrated; they are of course bounded by the same manifolds Sþ

1 ;S
�
1 ;S2 of the supercritical
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case. In R0; i.e., for high wind velocities, no limit cycles exist (see Fig. 6b); at Sþ
1 and S�

1 a
subcritical limit cycle surface emerges; at S2 a subcritical surface of two limit cycles with the same
amplitude and opposite frequency correction arise and coalesce with the previous one at the line
C; therefore no region with two limit cycles exists. All the solutions are found to be unstable.
Sections I–III are illustrated in Fig. 6c; Section IV in Fig. 6d. Along path I and for decreasing
wind velocities n; no stable solutions exist in R0 so that the motion diverges. The larger-amplitude
unstable solution defines the attraction basin of the equilibrium position in region R1; while the
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smaller solution bounds that in R3: Path II follows the locus C of the amplitude-coalescing
solutions (with no frequency corrections). Path III illustrates the Hopf subcritical bifurcation
while path IV shows the coalescence mechanism (Figs. 6a and e). Numerical results have again
confirmed the perturbation analysis (Fig. 6c). Finally, the amplitude curves, compared with those
of the uncontrolled system (where they are almost unnoticeable in the scale of the plot) turn out to
be all higher: therefore the TMD has a beneficial effect also on sections with subcritical behaviour,
since it enlarges the attraction basin.
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In Fig. 7 analysis is completed with subcritical aerodynamic behaviour in the imperfectly tuned
case. The results should be read as a perturbation of the tuned case.

5. Discussion

Some results have been presented in literature [10,11] to demonstrate the effectiveness of the
TMD also in the postcritical range. They are based on the assumption that the steady dynamics of
a PS equipped with a TMD can be described by an equivalent s.d.o.f. system. Two different
approaches have been followed in those papers. An equivalent structural damping was defined in
Ref. [11] by equating the critical velocities of the controlled and uncontrolled systems. According
to this criterion, the TMD would only modify the linear properties of the PS, by increasing the
structural damping, without affecting the non-linear forces acting on it. A more refined analysis
was performed in Ref. [10], by assuming that the ratio between the PS and TMD amplitudes of
motion remains constant in time. The procedure leads to an equivalent s.d.o.f. system, in which,
again, only the linear terms (damping as well stiffness) are modified by the TMD. In addition, a
non-linear algebraic equation must be solved to get the unknown frequency as function of the
linear parameters only (mass ratio, frequency ratio and damping). Both equivalent oscillators
furnish limit cycle amplitudes smaller than the uncontrolled ones.
The analysis developed in the present paper permits the results of Refs. [10,11] to be discussed.

It should initially be observed that the reduction of the system to a s.d.o.f. system is generally
incorrect. Indeed, while the non-linear dynamics of the simple aeroelastic oscillator is essentially
governed by a one-dimensional equation of the type ’a ¼ f ðaÞ; where a is the oscillation amplitude,
the dynamics of the coupled system is governed by a three-dimensional equation ’a ¼ fðaÞ; where
’a ¼ ð ’a; a; sÞ and s is the time-dependent frequency correction (see Eq. (21)). This dynamic richness
is a direct consequence of the fact that, around the optimum point P0; both the pairs of
eigenvalues play an active role in the postcritical behaviour, either in the region R2 (where both
are unstable) and in region R1 and R3 (where only one is unstable but, the other is close to it).
Therefore, no equivalence can exist among systems whose essential dynamics develop in spaces of
different dimensions. For example, steady quasi-periodic solutions are admitted by the three-
dimensional system (although they have been found here to be of unstable type), but are
forbidden in the one-dimensional one. The main difference between the two systems is that, while
the frequency correction does not substantially affect the dynamics of the simple aeroelastic
oscillator (since it does not modify the amplitude of the motion), in contrast it actively contributes
to the dynamics of the coupled oscillator (being strongly connected with the amplitude).
From Eq. ð213Þ it is seen that, even in the steady motion in which ’a ¼ 0; the frequency

correction s depends on both linear and non-linear terms in the amplitude a: The linear terms
account for the modification occurring in the frequency when the parameters are varied from their
optimum value (i.e., they describe the sensitivity of the eigenvalues of the system at the double
Hopf bifurcation point P0); the non-linear terms account for the effects of the aerodynamic forces.
The perturbation analysis developed in Section 3 shows that these effects all appear at the same e4-
order (see Eq. (18)) so that it is not allowed to neglect the latter in comparison with the former. If
non-linear effects have to be ignored, then, consistently, linear terms must be ignored too, and
s ¼ 0 must be taken, as predicted by the e3-order perturbation equation (16).
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However, the role played by non-linearities in the frequency correction equation ð213Þ is
fundamental to a correct description of the system behaviour. Indeed, if they are consistently
accounted for, the algebraic problem associated with Eqs. ð211;2;3Þ leads to a degree-three equation
in the squared amplitude a; responsible for the multiple branch solution displayed in regions R2
and R3 (see Figs. 3 and 5). In contrast, if s is taken as independent of the amplitude (e.g., equal to
zero), then a linear equation in the squared amplitude is found, structurally indentical to that of
the aeroelastic oscillator. Thus, the existence of a region of multiple branch solution is obscured.
As an example, if region R1 (with g ¼ g0) in Fig. 3 is considered (simple Hopf bifurcation for the
perfectly tuned system), s ¼ 0 is found, i.e., linear and non-linear effects on frequency balance
each other. The following approximate expression for the limit cycle can be derived:

a2 ¼ �
4

3

½ðxsn2 þ xt2Þ=m�U
dA3

¼
4

3

xeU

dA3
ð24Þ

from which an equivalent damping xe is drawn. Both the analyses developed in Refs. [10,11] do
not account for non-linear frequency correction and, in fact, do not highlight the existence of
multiple branch solutions. However, these analyses were applied to systems some way from the
double Hopf bifurcation point and only in the region R1; where it is reasonable to suppose that
the interaction between the two couples of eigenvalues is weak (since the stable couple has a
passive role). Therefore, the conclusions of Refs. [10,11] about the effectiveness of the TMD are
correct, but cannot be considered of general validity; however, they have been confirmed and
generalized by the wider analysis performed here.

6. Conclusions

The postcritical behaviour of a s.d.o.f. system equipped with a Tuned Mass Damper has been
analyzed for double Hopf bifurcation in the neighbourhood of 1:1 resonance. Due to the
coalescence of its eigenvalues, the system is defective at the criticality, and therefore admits an
incomplete set of eigenvectors. By using the Multiple Scale Method, a second order bifurcation
equation governing the time-evolution of the complex amplitude of the critical mode has been
derived. When a real-variables representation is adopted, three first order differential equations,
uncoupled from the fourth and describing the asymptotic dynamic of the system, have been
found. By solving the associate algebraic equations, steady solutions have been found representing
limit cycles for the original mechanical system. The regions of existence of such limit cycles have
been studied in the space of the control parameters. Up to three limit cycles have been found to
coexist, both for aerodynamically stable and for aerodynamically unstable section shapes.
Perturbation results have been found to be in excellent agreement with results obtained by directly
integrating the equations of motion. In all cases considered it has been found that the TMD has a
beneficial effect on the postcritical behaviour of the system, since it reduces the limit cycle
amplitudes in the supercritical case and increases them in the subcritical case. These results, while
they confirm the findings of Refs. [10,11], extend them to the whole parameter region of technical
interest, where previous methods of analysis cannot be employed.
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Appendix A

The expressions of the coefficients in Eqs. (16)–(20) are

s31 ¼C1 ¼ vH2 L2u1;

p31 ¼ vH1 L2u1;

p32 ¼ 1
2
vH1 f

0
xxxu

2
1 %u1;

s41 ¼C2 ¼ p31 þ vH2 L2u2;

s32 ¼C3 ¼ 1
2
vH2 f

0
xxxu

2
1 %u1;

s42 ¼C4 ¼ 2p32vH2 u2 þ vH2 f
0
xxxu1 %u1 %u2;

s43 ¼C5 ¼ p32v
H
2 u2 þ

1
2
vH2 f

0
xxxu

2
1 %u2: ðA:1Þ

In Eqs. (A.1), uk and vk ðk ¼ 1; 2Þ are the right and the left eigenvectors defined by Eqs. (6) and
(7); an overbar denotes the complex conjugate and ð ÞH the transpose conjugate. Moreover, z111 is
the solution to the following algebraic problem:

ðL0 � 3io0Þz111 ¼ 1
6
f0xxxu

3
1: ðA:2Þ
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